Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2012 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Cu@C dispersed TiO2 for dye-sensitized solar cell photoanodes

Authors: H. Paul Wang; H.Y. Kang;

Cu@C dispersed TiO2 for dye-sensitized solar cell photoanodes

Abstract

Nanosize copper embedded in the inert carbon shell (Cu@C) prepared by carbonization of Cu2+-β-CD at 573 K was dispersed in TiO2. The Cu@C (0.1% and 0.3%) dispersed TiO2 was used in assembling of photoanodes for dye-sensitized solar cells (DSSCs). By small angle X-ray scattering (SAXS) spectroscopy, it is found that the Cu@C dispersed TiO2 having an average Cu diameter of 18.3 nm and carbon shell thickness of 3–5 nm. Larger Cu nanoparticles having an average diameter of 24.5 nm in TiO2 was formed when their carbon shells were steam reformed at 673 K. The Cu nanoparticles having a spherical shape are well dispersed in TiO2, which significantly enhance the photo-excited electron transfer for the DSSC. Notably, the Cu dispersed TiO2 photoanode has a greater efficiency than the pure TiO2 one by at least 23%. This work exemplifies a simple and novel alternative to enhance DSSC efficiencies.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Top 10%
Top 10%
Top 10%
Related to Research communities
Energy Research