
Found an issue? Give us feedback
Please grant OpenAIRE to access and update your ORCID works.
This Research product is the result of merged Research products in OpenAIRE.
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
This Research product is the result of merged Research products in OpenAIRE.
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
All Research products
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu
Measured overall heat transfer coefficient of a suspended particle device switchable glazing

Authors: Brian Norton; Aidan Duffy; Aritra Ghosh;
Abstract
Suspended particle device (SPD) switchable glazing can change optical transmission from "opaque" state to "transparent" state in the presence of an alternating current (AC) power supply. It can be applied to control internal temperatures in buildings. Thermal characterisation of both SPD and same area of a double-glazing sample was accomplished using an outdoor test cell in Dublin, Ireland. The overall heat transfer coefficients (U value) were calculated for both systems from the experimental data. The average U values for SPD and double glazing samples were found to be 5.9W/m2K and 2.98W/m2K, respectively. Addition of double-glazing to this SPD switchable single glazing offered a U value of 1.99W/m2K.
Country
Ireland
Related Organizations
- Dublin Institute of Technology Ireland
- Technological University Dublin Ireland
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).101 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%

Found an issue? Give us feedback
citations
Citations provided by BIP!
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
popularity
Popularity provided by BIP!
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
101
Top 1%
Top 10%
Top 10%