Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Methane hydrate formation in excess water simulating marine locations and the impact of thermal stimulation on energy recovery

Authors: Mingjun Yang; Mingjun Yang; Girish Anand Pujar; Zheng Rong Chong; Praveen Linga;

Methane hydrate formation in excess water simulating marine locations and the impact of thermal stimulation on energy recovery

Abstract

Abstract In this work, we investigated the gas and water production profiles from methane hydrates formed in an excess water environment that mimic marine locations. Instead of pressurization by the addition of gas, water was injected into the sediment to create the high pressure environment of the reservoir, thereby creating a hydrate bearing sediment of high water saturation similar to those in marine locations. A framework is introduced to determine fractions of methane converted into hydrates during hydrate formation stage taking into account the effect of density changes, solubility and the in-situ pressure and temperature conditions. As opposed to 100% conversion assumed in the previous excess water works, our quantification shows that on average, the fractional conversion of methane is around 81.5% at comparable or larger experimental time scales (76–408 h). Upon the formation of quantitatively similar hydrate bearing sediments, the dissociation of methane hydrate was done under a constant pressure of 4.5 MPa subjecting to different thermal stimulation extents from 278.7 K to 285.2 K. It was found that low temperature driving force would result in an extremely low dissociation rate, and a minimum temperature of 280.7 K (corresponding to 2.1 K temperature driving force) is required to achieve a 90% dissociation within 10 h. In addition, through a simplified estimation of energy efficiency ratio (EER) and analysis of water production profile, we demonstrated the importance of water management in developing methods to effectively recover energy from hydrate bearing sediments.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    179
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
179
Top 1%
Top 10%
Top 1%