Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Air conditioning and power generation for residential applications using liquid nitrogen

Authors: Saad Mahmoud; Raya Al-Dadah; Abdalqader Ahmad;

Air conditioning and power generation for residential applications using liquid nitrogen

Abstract

Abstract Current air conditioning (AC) systems consume a significant amount of energy, particularly during peak times where most electricity suppliers face difficulties to meet the users’ demands, and the global demands for AC systems have increased rapidly over the last few decades leading to significant power consumption and carbon dioxide emissions. This paper presents a new technique that uses liquid nitrogen (LN2) produced from renewable energy sources, or surplus electricity at off peak times, to provide cooling and power for domestic houses. Thermodynamic analyses of various cryogenic cycles have been carried out to achieve the most effective configuration that produces the maximum power output with minimum LN2 flow rate, to meet the required cooling of a 170 m2 dwelling in Libya. A comparison with a conventional AC system was also made. Results showed that at the current LN2 prices, using LN2 to provide cooling and power demands of residential buildings is feasible and saves up to 36% compared to conventional air conditioning systems with an overall thermal efficiency of 74%. However, as the LN2 price decreases to around 1.3 pence per kg, the proposed technology will have significant advantages compared to conventional AC systems with savings of up to 81%.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Top 10%
Top 10%
Top 10%