
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Seasonal aspects of the energy-water nexus: The case of a run-of-the-river hydropower plant

handle: 11311/1028654
Abstract The energy-water nexus presents important implications at seasonal scale. For instance, electricity prices and streamflow have complex seasonal patterns and changes in both may adversely impact hydropower plant revenue. In order to quantify the effect of changes in price and water seasonality on future revenue distribution and its related uncertainty, we consider the case of a run-of-the-river plant. To this end, we integrate a hydrologic model, a hydropower model, two glacier inventories, six climate scenarios and five electricity price seasonal scenarios. Our results show that the impact of climate change on streamflow of the considered run-of-the-river plant will decrease the revenue by 20% in a business-as-usual price scenario. This decrease is mostly driven by a reduction of the annual streamflow due to glacier shrinkage rather than by the evolution of seasonality. From this perspective, the difference between the various climate scenarios is low. In contrast, change in electricity price seasonality induces a marked uncertainty in revenue. According to our scenarios, which assume no change in the mean annual electricity price, a change in price seasonality may indeed exacerbate or mitigate the impact of climate by 50 or 33% respectively, compared to the business-as-usual scenario. Our analysis highlights the need for considering intra-annual dynamics when investigating the energy-water nexus.
- Polytechnic University of Milan Italy
- University of Geneva Switzerland
- Imperial College London United Kingdom
info:eu-repo/classification/ddc/333.7-333.9, Alps; Climate change; Nexus; Run-of-the-river hydropower; Seasonality; Uncertainty; Civil and Structural Engineering; Energy (all), Alps, Uncertainty, Seasonality, Run-of-the-river hydropower, Climate change, Nexus, ddc: ddc:333.7-333.9
info:eu-repo/classification/ddc/333.7-333.9, Alps; Climate change; Nexus; Run-of-the-river hydropower; Seasonality; Uncertainty; Civil and Structural Engineering; Energy (all), Alps, Uncertainty, Seasonality, Run-of-the-river hydropower, Climate change, Nexus, ddc: ddc:333.7-333.9
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).73 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
