
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Numerical investigation on the combustion and emissions of a kerosene-diesel fueled compression ignition engine assisted by ammonia fumigation

As the world faces energy shortages, it is highly desirable to look for alternative fuels that are sustainable and renewable. Ammonia is one such candidate. In this numerical study, ammonia is applied to a diesel engine via fumigation and a pilot fuel is used to ignite the premixed ammonia. Numerical simulations are carried out using the KIVA4-CHEMKIN code in order to better understand the effects of ammonia combustion on engine performance and emissions. It is seen from this study that ammonia reduces carbon monoxide and carbon dioxide emissions as it replaces the carbon-based pilot fuels. Moreover, nitrogen oxide emissions decrease with little ammonia fumigation and increase with high ammonia fumigation. This is due to combustion temperature, ammonia quantity and ammonia-air kinetics. Furthermore, it is interesting to note that as the injection timing is advanced, primary as well as secondary heat-release peaks are observed. The secondary heat-release peak is due to the combustion of residual fuel near the cylinder liner as well as in the crevice region and this is caused by an increase in in-cylinder temperature as injection timing advances.
- National University of Singapore Singapore
- Nanjing University of Science and Technology China (People's Republic of)
- Nanjing University of Science and Technology China (People's Republic of)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).78 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
