
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Global available wind energy with physical and energy return on investment constraints

Abstract Looking ahead to 2050 many countries intend to utilise wind as a prominent energy source. Predicting a realistic maximum yield of onshore and offshore wind will play a key role in establishing what technology mix can be achieved, specifying investment needs and designing policy. Historically, studies of wind resources have however differed in their incorporation of physical limits, land availability and economic constraints, resulting in a wide range of harvesting potentials. To obtain a more reliable estimate, physical and economic limits must be taken into account. We use a grid-cell approach to assess the theoretical wind potential in all geographic locations by considering technological and land-use constraints. An analysis is then performed where the Energy Return on Investment (EROI) of the wind potential is evaluated. Finally, a top-down limitation on kinetic energy available in the atmospheric boundary layer is imposed. With these constraints wind farm designs are optimized in order to maximize the net energy flux. We find that the global wind potential is substantially lower than previously established when both physical limits and a high cut-off EROI > 10 is applied. Several countries’ potentials are below what is needed according to 100% renewable energy studies.
- Imperial College London United Kingdom
- Université Catholique de Louvain Belgium
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).135 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
