Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ RE.PUBLIC@POLIMI Res...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Analysis of flow field design on vanadium redox flow battery performance: Development of 3D computational fluid dynamic model and experimental validation

Authors: MESSAGGI, MIRKO; CANZI, PATRIZIO; Mereu, R.; Baricci, A.; Inzoli, F.; Casalegno, A.; Zago, M.;

Analysis of flow field design on vanadium redox flow battery performance: Development of 3D computational fluid dynamic model and experimental validation

Abstract

Abstract Homogeneous distribution of the electrolyte over the porous electrode is a critical issue hindering the commercialization of vanadium redox flow batteries, owing to increased overpotential at high current and limited power density of the system. Therefore, an understanding of the physical phenomena regulating mass transport of the electrolyte is crucial to improving system performance. The present work describes the development and experimental validation of a 3D computational fluid dynamic model of a vanadium redox flow battery in a half-cell configuration with an active area of 25 cm2. The model simulates the influence of a single serpentine and an interdigitated flow field. The adoption of the half-cell configuration allows the negative electrode to be considered as a pseudo-reference electrode with zero potential loss, leading to a reduction in computation time and the number of fitting parameters, which can be determined with reduced uncertainty. The developed model includes a traditional fluid dynamic analysis of the electrolyte in the flow field and in the porous electrode, coupled with the electrochemistry of the reactions involved. In both the experiments and the simulations, the single serpentine distributor exhibits better performance and higher pressure drops compared to those of the interdigitated geometry under all the investigated operating conditions. In the analysis of the local reaction rate, both distributors experienced increased reaction rates under the rib, induced by a by-pass flow between adjacent channels. The reaction rate shows a highly heterogeneous distribution in the serpentine geometry, while it is more uniform in the interdigitated configuration.

Related Organizations
Keywords

CFD, Interdigitated, Model, Serpentine, VRFB

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    162
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
162
Top 1%
Top 10%
Top 1%
Green