Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Applied Energyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Energy
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

In situ continuous current production from marine floating microbial fuel cells

Authors: Simona Pentassuglia; Simona Pentassuglia; Roberto Mo; Daniyal Ahmed; Daniyal Ahmed; Adriano Sacco; Marzia Quaglio; +7 Authors

In situ continuous current production from marine floating microbial fuel cells

Abstract

Abstract In order to power remote sensors and/or data transmission devices in an aquatic environment, sedimentary microbial fuel cells and floating microbial fuel cells have been proposed in the literature, representing a continuous source of renewable and sustainable energy. However, both classes of devices are characterized by large dimensions and are immobilized in the environment within which they are working. Accordingly, when portability and small dimensions are strict requirements, these configurations cannot be exploited. The present work proposes a novel, compact and cost-effective floating set-up based on small-scale microbial fuel cells. A method for in situ anodic biofilm formation was validated through experiments conducted in laboratory and in a real marine environment. Carbon felt-based anodic electrodes were used to build different replicas of floating microbial fuel cells. Their overall performance was evaluated during two field measurement campaigns carried out in the Mediterranean Sea. The study demonstrated a high stability of the floating microbial fuel cells even in a real, uncontrolled environment. The devices were able to continuously produce electricity using seawater as fuel and electrolyte. This study suggests that these devices can be used as portable power supplies for sensors in a complex environment such as the open sea due to the easy preparation of anodic electrodes, together with the simple architecture of floating microbial fuel cells.

Country
Italy
Keywords

floating microbial fuel cells; anode pre-colonization enrichment approach; field experiments; marine environment; synthetic solid-state electrolytes

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
25
Top 10%
Average
Top 10%
bronze