Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Vapour absorption enhancement using passive techniques for absorption cooling/heating technologies: A review

Authors: Manel Vallès; Carlos Amaris; Carlos Amaris; Mahmoud Bourouis;

Vapour absorption enhancement using passive techniques for absorption cooling/heating technologies: A review

Abstract

Abstract The absorption cooling/heating system is an old technology that has been relegated by the more efficient mechanical vapour compression systems. However, if they were driven by residual heat or solar thermal energy, advanced absorption technologies for cooling or heating could supply current demand and have a much lesser impact on the environment. With the cost of electricity rising and the climate change more and more in evidence, it would be a positive move towards energy saving. Since the absorber is recognized the key component of the absorption system due to the complex heat and mass transfer process that take place there, the improvement of the absorption process would mean reducing the absorber and desorber sizes to make them more compact, or reducing the system driving temperature for low grade temperature applications. The objective of this paper is to identify, summarize, and review the experimental studies dealing with the enhancement of vapour absorption processes in absorbers by means of passive techniques i.e. advanced surface designs and the use of additives and nanofluids. This review also includes an exhaustive and detailed scrutiny on absorption processes in falling film, spray and bubble mode absorbers for different working fluids, evidencing the experimenting techniques, operating conditions, and latest advances in terms of heat and mass transfer enhancement in absorbers. Finally, the paper contains suggestions for future work to be carried out to obtain mass transfer enhancement in absorbers and absorption cooling/heating systems.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    43
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
43
Top 10%
Top 10%
Top 10%