Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Applied Energyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Energy
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
UCL Discovery
Article . 2018
Data sources: UCL Discovery
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Spatio-temporal simulation of energy consumption in China's provinces based on satellite night-time light data

Authors: Weihua Yin; Jiali Zheng; Jiali Zheng; Zhongyu Ma; Hongwei Xiao; Zhifu Mi; Min Yan; +1 Authors

Spatio-temporal simulation of energy consumption in China's provinces based on satellite night-time light data

Abstract

Abstract Delay in publication of energy statistics prevents a timely assessment of progress towards meeting targets for energy saving and emission reduction in China. This makes it difficult to meet the requirements to rapidly monitor and evaluate energy consumption for each province. In this study, an alternative approach is provided to estimate the energy consumption by using satellite remote sensing data. We develop spatio-temporal geographically weighted regression models to simulate energy consumption of provinces in China based on the Defense Meteorological Satellite Program's Operational Linescan System (DMSP/OLS) global stable night-time light data. The models simulate China’s energy consumption accurately with the goodness of fit higher than 99%. Generally, the national average annual energy consumption is 2.8 billion tonnes of coal equivalent in China between 2000 and 2013, which is close to the actual value with errors smaller than 0.1%. From both temporal and spatial dimensions, the relative errors are smaller than 5.5% at the provincial level. Therefore, the use of satellite night-time light data provides a useful reference in monitoring and assessing provincial energy consumption in China.

Country
United Kingdom
Related Organizations
Keywords

690, China, Energy consumption, Night-time light data, Spatio-temporal geographically weighted regression, Simulation

Powered by OpenAIRE graph
Found an issue? Give us feedback