Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A modeling framework for optimization-based control of a residential building thermostat for time-of-use pricing

Authors: Paulo Cesar Tabares-Velasco; Andrew Speake; Andrew Speake; Tyrone L. Vincent; Michael Lanahan; Maxwell T. Harris; Alexandra M. Newman;

A modeling framework for optimization-based control of a residential building thermostat for time-of-use pricing

Abstract

Abstract Heating, ventilation and air conditioning for residential and commercial buildings requires a substantial share of electric energy, and ultimately drives summer peak demand in the United States. Variable electric rates are becoming more common in the residential market, as utilities try to encourage users to shift their energy demand. Model predictive controls, one method of reducing energy usage, employ an optimization model to minimize peak demand, energy usage, or electricity costs. This paper details the development of a co-simulation framework to rapidly model and simulate building energy use and optimize cooling setpoint controls. The framework integrates commercially available software to: (i) simulate all energy interactions between the building, internal gains, outdoor environment, and heating and cooling systems via a building energy simulation program (EnergyPlus), (ii) algebraically formulate an optimization problem (with AMPL) using a black-box, reduced-order model for rapid calculations, (iii) employ Simulink as the environment that links calls to EnergyPlus and AMPL, and (iv) solve the optimization model (with CPLEX) to minimize electricity costs and user discomfort. Variable electric time-of-use rates are analyzed in the context of total cooling electricity costs, thermal comfort of users, and peak demand shedding. The framework uses a model predictive control formulation capable of reducing cooling electricity costs by up to 30%; however, cost savings and peak demand shedding are highly dependent on the time-of-use electricity rate schedule.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    43
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
43
Top 10%
Top 10%
Top 10%