Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Shape-remodeled macrocapsule of phase change materials for thermal energy storage and thermal management

Authors: Zhi-Zhu He; Dehai Yu;

Shape-remodeled macrocapsule of phase change materials for thermal energy storage and thermal management

Abstract

Abstract This paper reports on a novel phase change material macrocapsule for thermal energy storage, which can be dynamically and repeatably remodeled as needed to a complicated shape with large-scale deformation. In addition, it effectively eliminates the stress mismatch, induced by the volumetric expansion (or shrink) of the phase change material during melting (or solidification), through the self-adaptative deformation of the coated flexible shell. The shape-remodeled macrocapsule, consisting of octadecanol as the core and the silicone elastomer for encapsulation, was prepared through a cast molding method. The high-concentration microparticles of low-melting Bi-In-Sn eutectic alloys were embedded into elastic shell for significantly enhancing its latent heat storage and heat conductivity. The prepared macrocapsule has a high latent heat density of 210.1 MJ/m3, which of the contribution from the shell is about 20%. The thermal conductivity of the macrocapsule core reaches to 1.53 W/m·K with a 428% increase compared with pure octadecanol. The flexible shell attains a high thermal conductivity of 1.98 W/m·K with an 890% increase compared with pure silicone, which also remains a high stretchability with 432% strain. The performance of shape remodeling, energy storage capacity, and heat charging and discharging rates of the macrocapsule were demonstrated in detail. The applications of the prepared macrocapsule as thermal management for the flexible electronic devices and the thermal storage for thermoelectric energy harvesting were also investigated. The present study opens the way for further development of elastic phase change material capsule applications in energy storage systems and thermal control engineering.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    75
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
75
Top 1%
Top 10%
Top 1%