
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Importance subsampling: improving power system planning under climate-based uncertainty

handle: 10044/1/74479 , 10044/1/69258
Recent studies indicate that the effects of inter-annual climate-based variability in power system planning are significant and that long samples of demand & weather data (spanning multiple decades) should be considered. At the same time, modelling renewable generation such as solar and wind requires high temporal resolution to capture fluctuations in output levels. In many realistic power system models, using long samples at high temporal resolution is computationally unfeasible. This paper introduces a novel subsampling approach, referred to as "importance subsampling", allowing the use of multiple decades of demand & weather data in power system planning models at reduced computational cost. The methodology can be applied in a wide class of optimisation-based power system simulations. A test case is performed on a model of the United Kingdom created using the open-source modelling framework Calliope and 36 years of hourly demand and wind data. Standard data reduction approaches such as using individual years or clustering into representative days lead to significant errors in estimates of optimal system design. Furthermore, the resultant power systems lead to supply capacity shortages, raising questions of generation capacity adequacy. In contrast, "importance subsampling" leads to accurate estimates of optimal system design at greatly reduced computational cost, with resultant power systems able to meet demand across all 36 years of demand & weather scenarios.
- University of Reading
- University of Reading United Kingdom
- Imperial College London Department of Mathematics United Kingdom
- National Centre for Atmospheric Science
- University of Reading Finland
FOS: Computer and information sciences, Energy, 330, Statistics - Applications, 09 Engineering, Applications (stat.AP), stat.AP, 14 Economics
FOS: Computer and information sciences, Energy, 330, Statistics - Applications, 09 Engineering, Applications (stat.AP), stat.AP, 14 Economics
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).40 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
