Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hyper Article en Lig...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Energy
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL-IRD
Article . 2020
Data sources: HAL-IRD
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An integrated GIS and robust optimization framework for solar PV plant planning scenarios at utility scale

Authors: Pillot, Benjamin; Al-Kurdi, Nadeem; Gervet, Carmen; Linguet, Laurent;

An integrated GIS and robust optimization framework for solar PV plant planning scenarios at utility scale

Abstract

Abstract Today, the overall goal of energy transition planning is to seek an optimal strategy for increasing the share of renewable sources in existing power networks, such that the growing power demand is satisfied at manageable short/long term investment. In this paper we address the problem of PV penetration in electricity networks, by considering both (1) the spatial issue of site selection and size, and (2) the temporal aspect of hourly load and demand satisfaction, in addition with the investment and maintenance costs to guarantee a viable and reliable solution. We propose to address this spatio-temporal optimization problem through an integrated GIS and robust optimization model, that allows handling of the ubiquitous dependencies between resource and demand time variability and the selection of optimal sites of renewable power generation. Our approach contributes to the integration of the multi-dimensional and combinatorial aspects of this problem, gathering geographical layers (regional or national scale) and temporal packing (hourly time stamp) constraints, and cost functions. This model computes the optimal geographical location and size of PV facilities allowing energy planning targets to be met at minimal cost in a reliable manner. In this paper, we illustrate our approach by studying the penetration of large-scale solar PV in the French Guiana’s power system. Among the results, we show for instance that: (1) our approach performs geographical aggregation with real contextual data, i.e. balances the intermittency of RE sources by spreading out the corresponding installations (location + size) across the territory; (2) the total installed PV capacity can be doubled by removing the 35% penetration limit on intermittent power without exceeding hourly demand; (3) the safest investment scenario is below 30 MW of new PV facilities ( ≈ 45 M€ and 2 plants), though it is theoretically possible to install up to 45 MW (>120 M€ and 11 plants).

Country
France
Keywords

[INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI], energy planning, [SPI.NRJ]Engineering Sciences [physics]/Electric power, robust optimization, GIS, solar PV, site selection, [INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI], spatiotemporal dimensions, [SPI.NRJ] Engineering Sciences [physics]/Electric power

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    53
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
53
Top 1%
Top 10%
Top 1%
Green
bronze