Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Bath's...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Should we inject hydrogen into gas grids? Practicalities and whole-system value chain optimisation

Authors: Quarton, Christopher; Samsatli, Sheila;

Should we inject hydrogen into gas grids? Practicalities and whole-system value chain optimisation

Abstract

Abstract Injection of hydrogen into existing natural gas grids, either partially or as a complete conversion, could decarbonise heat and take advantage of the inherent flexibility that gas grids provide in a low-carbon future. However, hydrogen injection is not straightforward due to the differing properties of the gases and the need for low-cost, low-carbon hydrogen supply chains. In this study, an up-to-date assessment of the opportunities and challenges for hydrogen injection is provided. Through value chain optimisation, the outlook for hydrogen injection is considered in the context of a national energy system with a high reliance on natural gas. The optimisation captures the operational details of hydrogen injection and gas grid flexibility, whilst also modelling the wider context, including interactions with the electricity system and delivery of energy from primary resource to end-use. It is found that energy systems are ready for partial hydrogen injection now and that relatively low feed-in tariffs (£20–50/MWh) could incentivise it. Partial hydrogen injection could provide a stepping stone for developing a hydrogen infrastructure but large scale decarbonisation of gas grids requires complete conversion to hydrogen. Whether this solution is preferable to electrification in the long term will depend on the value of the gas grid linepack flexibility and the costs of expanding electricity infrastructure.

Country
United Kingdom
Related Organizations
Keywords

/dk/atira/pure/sustainabledevelopmentgoals/reduced_inequalities; name=SDG 10 - Reduced Inequalities

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    94
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
94
Top 1%
Top 10%
Top 1%
Green