Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Techno-economic analyses of multi-functional liquid air energy storage for power generation, oxygen production and heating

Authors: Xiaohui She; Nevzat Akkurt; Chen Wang; Yimo Luo; Xiaosong Zhang; Xiaosong Zhang;

Techno-economic analyses of multi-functional liquid air energy storage for power generation, oxygen production and heating

Abstract

Abstract Liquid air energy storage (LAES) is increasingly popular for decarbonizing the power network. At off-peak time, ambient air after purification is liquefied and stored; at peak time, the liquid air is discharged to generate power. One of the key challenges for the LAES system is the lower economic benefit as peak electricity is usually the only source of income, leading to a longer payback period of ~15 years. To address this issue, this paper, for the first time, proposes a multifunctional LAES system, which not only generates peak electricity but also provides pure oxygen and heating. The proposed system is composed of an air separation unit (ASU), a nitrogen liquefaction unit (NLU) and a power generation unit (PGU). Thermodynamic and economic analyses are carried out on the proposed system. Compared with the baseline LAES system (NLU + PGU), the multifunctional LAES system has a lower round trip efficiency of ~0.39 due to the extra electricity consumption by the ASU. However, it shows a much better economic performance with additional benefits from pure oxygen and heating. In a project life-span of 30 years, the multifunctional LAES system (10 MW/80 MWh) has a short payback period of ~5.7 years. Furthermore, it has a savings-to-investment ratio of 3.12, which is ~153% higher than that of the baseline LAES system. Investigation on the system operation strategy suggests that the ASU should operate at full time. The proposed system provides a feasible way to improve the economic benefits of the LAES system, thus promoting its wide applications.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    65
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
65
Top 1%
Top 10%
Top 1%