
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A novel hybrid model for the estimation of energy conversion in a wind farm combining wake effects and stochastic dependability

handle: 11570/3177607 , 20.500.11769/490908
Abstract The contribution of wind power systems to the reduction of the impact of fossil fuels sources has increased more and more during the last decades leading to a greater attention to the estimation of the performances of renewable power plants. However, forecast methods of productivity of onshore/offshore wind farms still suffer, in terms of accuracy, the innate variability of the energy resources and the effect of components failures. This paper proposes a novel “hybrid” approach for the estimation of the energy conversion of onshore wind farms. The model combines the Jensen wake mathematical theory with a stochastic dependability model, a Fault Tree, to better forecast the energy production. A new key index was conceived to optimize the preventive maintenance of wind turbines. This model was tested on a real case study, a wind farm (25.5 MWp) located in the south of Italy. Results were promising because the model achieved a twofold objective to improve the accuracy of the energy conversion forecast and to provide a support decision system for the activities of maintenance planning.
- Università degli studi di Salerno Italy
- University of Messina Italy
- University of Messina Italy
- University of Catania Italy
Energy assessment, Corrective maintenance, Wind farms, Preventive maintenance, Corrective maintenance, Jensen wake model, Energy assessment, Wind farms, Jensen wake model, Preventive maintenance
Energy assessment, Corrective maintenance, Wind farms, Preventive maintenance, Corrective maintenance, Jensen wake model, Energy assessment, Wind farms, Jensen wake model, Preventive maintenance
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).26 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
