Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ e-Prints Sotonarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Energy
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Energy
Article
License: CC BY
Data sources: UnpayWall
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The effect of the polarised cathode, formate and ethanol on chain elongation of acetate in microbial electrosynthesis

Authors: Jean-Marie Fontmorin; Eileen Hao Yu; Eileen Hao Yu; Paniz Izadi; Ian M. Head; Bernardino Virdis;

The effect of the polarised cathode, formate and ethanol on chain elongation of acetate in microbial electrosynthesis

Abstract

Abstract Reduction of CO2 to acetate in microbial electrosynthesis has been widely studied. However, the selective and quantitative production of longer chain chemicals and biofuels is still a bottleneck. Lack of sufficient energy provided by only the cathode electrode in Bio-electrochemical systems during chain elongation is one of the key challenges. It is assumed that additional electron donors than a polarised cathode is required to steer the production towards longer chain of carboxylates than acetate. In this study, formate and ethanol were supplied separately in the reactors fed by CO2 for 45 days in addition to the cathodes poised at −1.0 V vs. Ag/AgCl to investigate their effect on production. Although acetate was still the major product, supplying electron donors directed the production towards more diverse and longer chain organic chemicals than that in presence of the polarised cathode only. Significant improvement in the production of butyrate (×3.8 increase in maximum concentration) and butanol (maximum of 6.8 ± 0.3 mmol C L−1) was observed after supplying formate, while ethanol increased the diversity of the products. Supplying formate and ethanol in reactors for another 30 days under open circuit potential clarified that only ethanol could provide sufficient energy for butyrate production from acetate in the absence of polarised cathode, which reached the highest butyrate concentration of 19.1 ± 2.3 mmol C L−1. Formate was only consumed in presence of polarised cathode. It is proposed in our study that production of C4 products in presence of only cathodic electrode or cathodic electrode and formate could be associated to initial reduction of acetate to ethanol, consumed for production of C4 products through acetate. Trace levels of caproate and hexanol were detected in both reactors supplied with formate and ethanol only in the presence of polarised cathode.

Country
United Kingdom
Keywords

600, 540

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    38
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
38
Top 1%
Top 10%
Top 1%
Green
hybrid