Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Regenerative fuel cells: Recent progress, challenges, perspectives and their applications for space energy system

Authors: Shanyu Wang; Shijun Liao; Shuhui Sun; Zonghua Pu; Gaixia Zhang; Dewen Zheng; Zhangxin Chen; +1 Authors

Regenerative fuel cells: Recent progress, challenges, perspectives and their applications for space energy system

Abstract

Abstract Energy storage and transportation technologies play an important role in space exploration missions. Regenerative fuel cells are among the most promising sustainable energy power sources. Compared to secondary batteries, regenerative fuel cells possess unique advantages, including high power density, high specific energy density, light-weight, low-cost, high-efficiency, long-life, and zero environmental impact. More importantly, an regenerative fuel cell is an electrochemical device that can collect and store solar energy during the daytime and release it gradually whenever is needed, making energy available 24/7. Therefore, the development of high-performance regenerative fuel cells in the aerospace sector is becoming more and more important. Herein, in this review, various types of fuel cells are briefly introduced, followed by a detailed discussion and comparison between different unitized regenerative fuel cells. Electrocatalysts and membranes are two of the essential components in the unitized regenerative fuel cells that play a key role in enhancing the system's efficiency. Thus, recent progress and challenges on bifunctional hydrogen and oxygen electrodes are systematically summarized and discussed, respectively. More importantly, the progress and challenges of proton and anion electrolyte membranes are discussed. Further, power performance and durability are two important measures for the application of regenerative fuel cells in space energy systems. Therefore, the current progress of fuel cells in power performance and durability are summarized and discussed. In the end, the key issues and future perspectives of unitized regenerative fuel cells toward space energy storage and transportation are presented.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    89
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
89
Top 1%
Top 10%
Top 1%