
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Technology roadmap of renewable natural gas: Identifying trends for research and development to improve biogas upgrading technology management

Abstract Upgrading biogas offers interchangeability with natural gas, plus the benefits of converting waste into energy to help address climate change. However, only 5% of the biogas produced worldwide is purified to biomethane and injected into the gas grid or used as a transport fuel. Using a Technology Roadmapping approach, this study aims to identify technology trends, key players, and critical factors to broader the production and application of biomethane. Data included 53 companies’ websites, 194 granted patents, 177 patents applied for, and 225 articles, correlating them to different timeframes. We classify the gathered information into taxonomies, which outlines the sector's global trends and gaps over time. Our findings have direct implications for guiding R&D management and strategic planning. Overall, we found that hybrid processes, mainly membranes combined with pressure swing adsorption and absorption with membrane contactor, and cryogenic separation are tendencies for short and medium-term development focus. Carbon Capture, Utilisation and Storage, and biological upgrading processes, especially microalgae-based, have had a great academic interest and are long-term trends, present in 32% and 20% of the articles, respectively. Biogas upgrading technologies are at a high maturity level with more prominent activity in optimisation and hybrid technologies. There is room for materials improvement and breakthroughs in second-generation technologies, such as biological methanation and Power-to-Gas, by converting carbon dioxide instead of its separation. Finally, to ensure biomethane sustainability and competitiveness, energy & environmental efficiencies and cost reduction are critical factors for R&D, which has prioritised gas purity, yield, and recovery.
- Centro de Diseño, Cine y Television Mexico
- Federal University of Rio de Janeiro Brazil
- University of Surrey United Kingdom
- Centro Universitário da Cidade Brazil
- Federal University of Rio de Janeiro Brazil
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).41 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
