
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Aging effects on modelling and operation of a photovoltaic system with hydrogen storage

Abstract In this work, the aging effects on modelling and operation of a photovoltaic system with hydrogen storage in terms of energy production decrease and demand for additional hydrogen during 10 years of the system operation was analysed for the entire energy system for the first time. The analyses were performed with the support of experimental data for the renewable energy system composed of photovoltaic modules, fuel cell, electrolysers, hydrogen storage and hydrogen backup. It has been found that the total degradation of the analysed system can be described by the proposed parameter – unit additional hydrogen consumption ratio. The results reveal a 33.2–36.2% increase of the unit fuel requirement from an external source after 10 years in reference to the initial condition. Degradation of the components can, on the other hand, be well described with the unit hydrogen consumption ratio by fuel cell for electricity or the unit electricity consumption ratio by electrolyser for hydrogen production, which has been found to vary for the electrolyser in the range of 4.6–4.9% and for the fuel cell stack in the range of 13.4–15.1% during the 10 years of the system operation. The analyses indicate that this value depends on the load profile and PV module types and the system performance decline is non-linear.
- Jagiellonian University Poland
- University of Diyala Iraq
- AGH University of Science and Technology Poland
- University of Diyala Iraq
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).55 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
