Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A comparative techno-economic analysis of renewable methanol synthesis from biomass and CO2: Opportunities and barriers to commercialization

Authors: Kylee Harris; R. Gary Grim; Zhe Huang; Ling Tao;

A comparative techno-economic analysis of renewable methanol synthesis from biomass and CO2: Opportunities and barriers to commercialization

Abstract

Abstract Global demand for methanol as both a chemical precursor and a fuel additive is rising. At the same time, numerous renewable methanol production pathways are under development, which, if commercialized, could provide significant environmental benefits over traditional methanol synthesis pathways. However, it is difficult to compare technologies at different maturity levels, with differing feedstocks, and with significant differences in overall process design. Thus, there is a need to harmonize the analyses of renewable pathways using a consistent techno-economic approach to evaluate the potential for commercialization of various pathways. This analysis uses a novel cross-comparison method to assess near-term and long-term viability of both low- and high-maturity level technologies. The techno-economic assessment considers cost factors critical to market acceptance combined with carbon- and energy-efficiency assessments of three renewable pathways compared with a commercial baseline. We find that biomass gasification to methanol represents a near-term viable pathway with a high technology readiness level and commercially competitive market price. If cost-reducing technological improvements can be realized and scaled up in the CO2 electrolysis pathways, the potential for higher carbon efficiencies may help drive market adoption of these more modular, direct conversion pathways in future markets as they present an opportunity to better support global decarbonization efforts through efficient waste carbon utilization.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    76
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
76
Top 1%
Top 10%
Top 1%
bronze