Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cranfield University...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cranfield CERES
Article . 2021
License: CC BY NC ND
Data sources: Cranfield CERES
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Transition towards solar Photovoltaic Self-Consumption policies with Batteries: From the perspective of distribution networks

Authors: Alnaser, Sahban W.; Althaher, Sereen Z.; Long, Chao; Zhou, Yue; Wu, Jianzhong; Hamdan, Reem;

Transition towards solar Photovoltaic Self-Consumption policies with Batteries: From the perspective of distribution networks

Abstract

The transition towards low-carbon energy systems requires increasing the contribution of residential Photovoltaic (PV) in the energy consumption needs (i.e., PV self-consumption). For this purpose, the adoption of PV self-consumption policies as alternatives to the current net-metering policy may support harnessing batteries to improve PV self-consumption. However, the technical impacts of PV policies on distribution networks have to be adequately assessed and mitigated. To do so, a two-stage planning framework is proposed. The first stage is an optimization approach that determines the best sizes of PV and batteries based on the adopted PV policy. The second stage assesses the impacts of the resulting sizes on distribution networks using Monte-Carlo simulations to cope with uncertainties in demand and generation. The framework is applied on real medium and low voltage distribution networks from the south of Jordan. For the net-metering, the results show that the uptake of residential PV penetration above 40% will result in voltage issues. It is also found that the adoption of batteries for the benefits of customers (i.e., reduce electricity bills) will not mitigate the PV impacts for PV penetration above 60%. Further, the results demonstrate the important role of distribution network operators to manage the uptake of batteries for the benefits of customers and distribution networks. Network operators can support customers to adopt larger sizes of batteries to achieve the desired PV self-consumption in return of controlling the batteries to solve network issues. This facilitates the uptake of 100% PV penetration and improves PV self-consumption to 50%.

Country
United Kingdom
Keywords

PV policies, PV impacts, 600, PV self-consumption, Batteries, Distribution networks, Net-metering

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Top 10%
Average
Top 10%
Green