Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Publications Open Re...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Energy
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2022
Data sources: VIRTA
https://dx.doi.org/10.48550/ar...
Article . 2021
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 9 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Techno-economic analysis of Power-to-Gas plants in a gas and electricity distribution network system with high renewable energy penetration

Authors: Fambri, Gabriele; Diaz-Londono, Cesar; Mazza, Andrea; Badami, Marco; Sihvonen, Teemu; Weiss; Robert;

Techno-economic analysis of Power-to-Gas plants in a gas and electricity distribution network system with high renewable energy penetration

Abstract

Distributed generation, based on the exploitation of Renewable Energy Sources (RES), has increased in the last few decades to limit anthropogenic carbon dioxide emissions, and this trend will increase in the future. However, RES generation is not dispatchable, and an increasing share of RES may lead to inefficiencies and even problems for the electricity network. Flexible resources are needed to handle RES generation in order to support the delicate electricity generation and demand balance. Energy conversion technologies (P2X, Power to X) allow the flexibility of energy systems to be increased. These technologies make a connection between different energy sectors (e.g., electricity and gas) possible, and thus create new synergies within an overall multi energy system. This paper analyzes how the P2G technology can be used at the distribution network level (both gas and electricity) to optimize the use of RES. In fact, in order to coordinate P2X resources, it is necessary to take into account the whole multi energy scenario, and not just the electrical side: it therefore becomes fundamental to recognize the pros and cons that Balancing Service Providers (BSPs), composed of a number of P2G plants (representing the Balancing Responsible Providers, BRPs), may have when offering services to an electricity network. Moreover, the convenience of the decarbonization of the gas grid has been evaluated through the calculation of the levelized cost of Synthetic Natural Gas (LCSNG) for cost scenarios for the years 2030 and 2050, considering different assumptions about the cost of the surplus utilization of RES. The results show that LCSNG may vary from 47 to 319 EURO/MWh, according to the different configurations, i.e., only in the best case scenario is the SNG cost comparable with the cost of natural gas, and hence does the P2G technology result to be profitable

Country
Italy
Keywords

ta212, ta214, Multi energy system, Levelized cost of energy, Renewable energy integration; Electrical distribution system; Gas distribution system; Multi energy system; Power-to-gas; Levelized cost of energy, Systems and Control (eess.SY), Electrical distribution system, Electrical Engineering and Systems Science - Systems and Control, Renewable energy integration, Electrical distribution system, Gas distribution system, Multi energy system, Power-to-gas, Levelized cost of energy, Renewable energy integration, SDG 13 - Climate Action, FOS: Electrical engineering, electronic engineering, information engineering, SDG 7 - Affordable and Clean Energy, Gas distribution system, Power-to-gas

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    60
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
60
Top 1%
Top 10%
Top 1%
Green
bronze