Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Istanbul Ticaret Uni...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Deep learning-based scheduling of virtual energy hubs with plug-in hybrid compressed natural gas-electric vehicles

Authors: Mohammad Seyfi; Mehdi Mehdinejad; Behnam Mohammadi-Ivatloo; Heidarali Shayanfar;

Deep learning-based scheduling of virtual energy hubs with plug-in hybrid compressed natural gas-electric vehicles

Abstract

The virtual energy hub (VEH), a combination of virtual power plant and energy hub concepts, faces many uncertainties due to its constituent distributed energy resources. This paper presents the deep learning-based scheduling of VEH for participation in electrical and thermal markets using bidirectional long short-term memory (BLSTM) network, which offers excellent accuracy in forecasting uncertain parameters by concurrent using past and future dependencies. In addition to applying learning methods, energy storage systems can also influence the optimal management of uncertainties. To provide the required electrical storage equipment, the VEH employs plug-in hybrid CNG-electric vehicles (PHGEVs) that can use both electrical energy and compressed natural gas (CNG) to fulfill their energy needs. The alternative fuel can tackle the limitations of prolonged charging of electric vehicles and excess load caused by these vehicles at peak hours. To supply the secondary fuel of PHGEVs, the modeled VEH includes a CNG station, which compresses the natural gas imported from the natural gas grid before delivering it to the vehicles. Furthermore, phase change material-based thermal energy storage (PCMTES) is considered in the VEH configuration, which unlike other common thermal energy storage systems, operates at a constant temperature during the charging and discharging period. Lastly, the simulation of the developed system illustrates that PHGEVs can reduce the imposed cost in unforeseen situations by up to 26 percent and increase the system's flexibility.

Country
Turkey
Keywords

CNG station; Deep learning; Phase change material-based thermal energy storage; Plug-in hybrid CNG-electric vehicle; Pollutant emissions; Virtual energy hub

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Top 10%
Average
Top 10%
Green