Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

PV–battery-hydrogen plant: Cutting green hydrogen costs through multi-market positioning

Authors: Ivan Pavić; Nikolina Čović; Hrvoje Pandžić;

PV–battery-hydrogen plant: Cutting green hydrogen costs through multi-market positioning

Abstract

Integration of renewable energy sources as one of the pillars of the power system decarbonization efforts is making a significant progress. However, large shares of renewables require additional flexibility to keep the system stable. Battery storage was identified as one of the solutions to restore the grid balance in short timeframes, from day-ahead to real time. Currently, the research community is trying to find an adequate technology for longer duration energy storage. Hydrogen, as an energy carrier, appears as a good choice for such task. Apart from hydrogen energy storage potential, it can also be used to implement power-to-gas technology able to mitigate renewable energy curtailment through the process of electrolysis. The produced hydrogen gas can be either used to partially decarbonize the natural gas grids or simply sold as hydrogen fuel. The main novelty of this paper is the creation of a mathematical model of a renewable power plant coupled with a battery storage and a hydrogen facility for trading in three day-ahead energy markets, i.e. electricity, natural gas and hydrogen, plus in the power balancing market subject to the imbalance settlement mechanism. This approach enables a long-term profitability analysis of different renewable, battery and hydrogen architectures (hydrogen energy storage, power-to-gas and their combination) and their participation in different markets. The results indicate that the battery energy storage provides balancing services to the transmission system operator almost exclusively, while it never provides balancing for its own imbalance needs, since this option is less financially attractive. The electrolyzer and the fuel cell operate at least one third of the year, depending on the observed case, and often provide a reserve. When considering the hydrogen market, the electrolyzer operates almost the entire year due to lucrative hydrogen prices. Both the battery storage and the hydrogen tank perform arbitrage in the day-ahead market, where the battery optimizes its operation on an hourly basis (short-term) and the hydrogen tank on a daily basis (medium- to long-term).

Country
Croatia
Keywords

Hydrogen grid, Electricity balancing, Fuel cell, Gas grid, Hydrogen storage, Electrolyzer, Battery storage, Battery storage ; Hydrogen storage ; Electrolyzer ; Fuel cell ; Electricity balancing ; Gas grid ; Hydrogen grid

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Top 10%
Top 10%
Top 10%