
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Interpretable temporal-spatial graph attention network for multi-site PV power forecasting

Accurate forecasting of photovoltaic (PV) and wind production is crucial for the integration of more renewable energy sources into the power grid. To address the limited resolution and costs of methods based on numerical weather predictions (NWP), we take PV production data as main input for forecasting. Since PV power is affected by weather and cloud dynamics, we model spatio-temporal correlations between production data by representing PV systems as nodes of a dynamic graph and embedding production data, geographical information and clear-sky irradiance as signals on that graph. We introduce a new temporal-spatial multi -windows graph attention network (TSM-GAT) for predicting future PV power production. TSM-GAT can adapt to the dynamics of the problem, by learning different graphs over time. It consists of temporal attention with an overlapping-window mechanism that finds the temporal correlations and spatial attention with a multi-window mechanism, which captures different dynamical spatio-temporal correlations for different parts of the forecasting horizon. Thus, it is possible to interpret which PV stations have the most influence when making a prediction for short-, medium-and long-term intra-day forecasts. TSM-GAT outperforms multi-site state-of-the-art models for four to six hours ahead predictions, with average NRMSE 12.4% and 10.5% on a real and synthetic dataset, respectively. Furthermore, it outperforms state-of-the-art models that use NWP as inputs for up to five hours ahead predictions. TSM-GAT yields predicted signals with a closer shape to ground truth than state-of-the-art models, which indicates that it is better at capturing cloud motion and may lead to better generalization capabilities.
- École Polytechnique Fédérale de Lausanne EPFL Switzerland
graph neural networks, neural-network, machine learning, photovoltaic systems, time series forecasting, graph signal processing, term, time
graph neural networks, neural-network, machine learning, photovoltaic systems, time series forecasting, graph signal processing, term, time
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).42 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
