
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Reducing climate risk in energy system planning: A posteriori time series aggregation for models with storage

The growth in variable renewables such as solar and wind is increasing the impact of climate uncertainty in energy system planning. Addressing this ideally requires high-resolution time series spanning at least a few decades. However, solving capacity expansion planning models across such datasets often requires too much computing time or memory. To reduce computational cost, users often employ time series aggregation to compress demand and weather time series into a smaller number of time steps. Methods are usually a priori, employing information about the input time series only. Recent studies highlight the limitations of this approach, since reducing statistical error metrics on input time series does not in general lead to more accurate model outputs. Furthermore, many aggregation schemes are unsuitable for models with storage since they distort chronology. In this paper, we introduce a posteriori time series aggregation schemes for models with storage. Our methods adapt to the underlying energy system model; aggregation may differ in systems with different technologies or topologies even with the same time series inputs. Furthermore, they preserve chronology and hence allow modelling of storage technologies. We investigate a number of approaches. We find that a posteriori methods can perform better than a priori ones, primarily through a systematic identification and preservation of relevant extreme events. We hope that these tools render long demand and weather time series more manageable in capacity expansion planning studies. We make our models, data, and code publicly available.
- University of Reading United Kingdom
- University of Reading
- Imperial College London United Kingdom
- Imperial College London Finland
- Imperial College London Department of Mathematics United Kingdom
FOS: Computer and information sciences, Applications (stat.AP), Statistics - Applications
FOS: Computer and information sciences, Applications (stat.AP), Statistics - Applications
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).7 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
