Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ HAL Descartesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL Descartes
Article . 2023
Data sources: HAL Descartes
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL-CEA
Article . 2023
Data sources: HAL-CEA
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Energy
Article . 2023 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Applied Energy
Article . 2023 . Peer-reviewed
http://dx.doi.org/10.1016/j.ap...
Article
License: Elsevier TDM
Data sources: Sygma
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Stress factor identification and Risk Probabilistic Number (RPN) analysis of Li-ion batteries based on worldwide electric vehicle usage

Authors: Marc Haber; Philippe Azaïs; Sylvie Genies; Olivier Raccurt;

Stress factor identification and Risk Probabilistic Number (RPN) analysis of Li-ion batteries based on worldwide electric vehicle usage

Abstract

Having clear insights of the stress factors that the electric vehicle (EV) batteriesencounter during their service lifetime is crucial for more reliable ageing testing andmodelling. Since the first deployment of Li-ion battery based EV, numerous drivingcampaigns with field data were published. The goal of this article is to gather, assessand analyse them in order to quantify the stress factors depending on the EV type. Thetargeted stress factors are the temperature of the cells, the discharging and chargingrates, as well as the SOC ranges. 228 million km of driving and 7.8 million trips worthof data for over 37,000 EV were investigated. Along with this literature enquiry, datafrom an EV in which cells' temperature was monitored for driving, charging andparking conditions, complemented the analysis. For each stress factor, results werecollected, homogenised and compared with each other in order to draw conclusions.Finally, a Risk Probabilistic Number (RPN) was used to evaluate the stress factors withrespect to their impact on the ageing of Li-ion batteries, considering a central Europeanweather. The most critical stress factors for BEV cells are cycling at high mid-SOCregions and high SOC idle times. Concerning HEV cells, high power cycling at mid-SOC regions is the most critical stress, and no stresses were identified during idletimes. PHEV cells' most critical stress factors are large DOD cycling and highcharge/discharge power. Mild and low temperatures are found to be the most commonin such weathers. The RPN analysis serves as a guide for parametrizing and designingreliable accelerated ageing testing on Li-ion batteries depending on their application.

International audience

Country
France
Keywords

[PHYS]Physics [physics], 600, 620, [PHYS] Physics [physics]

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Top 10%
Green
Funded by
Related to Research communities
Energy Research