
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Investment-based optimisation of energy storage design parameters in a grid-connected hybrid renewable energy system

Grid-connected hybrid renewable power systems with energy storage can reduce the intermittency of renewable power supply. However, emerging energy storage technologies need improvement to compete with lithium-ion batteries and reduce the cost of energy. Identifying and optimizing the the most valuable improvement path of these technologies is challenging due to the non-linearity of the energy system model when considering parameters as independent variables. To overcome this, a novel investment-based optimization method is proposed. The method involves linear optimization of the hybrid renewable energy system and subsequent investment optimization, accounting for diminishing improvements per investment. Applied to thermal energy, pumped thermal energy, molten salt, and adiabatic compressed air energy storage technologies, the results show that enhancing discharge efficiency is most valuable for all technologies. Reducing discharge capacity costs and energy storage capacity cost can also become important. Charge capacity cost and charge efficiency are found to be of lesser significance. The study provides detailed improvement pathways for each technology under various operational conditions, assisting developers in resource allocation. Overall, the investment-based optimization method and findings contribute to enhancing the competitiveness of emerging energy storage technologies and reducing reliance on batteries in renewable energy systems.
- Aarhus University Denmark
- Aarhus University Denmark
- Aarhus University Denmark
Optimization and Control (math.OC), FOS: Electrical engineering, electronic engineering, information engineering, FOS: Mathematics, Systems and Control (eess.SY), Electrical Engineering and Systems Science - Systems and Control, Mathematics - Optimization and Control
Optimization and Control (math.OC), FOS: Electrical engineering, electronic engineering, information engineering, FOS: Mathematics, Systems and Control (eess.SY), Electrical Engineering and Systems Science - Systems and Control, Mathematics - Optimization and Control
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).14 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
