Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Thermal Engi...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Thermal Engineering
Article . 2014 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Application of life cycle thermo-ecological cost methodology for evaluation of biomass integrated gasification gas turbine based cogeneration

Authors: Jacek Kalina; Wojciech Stanek; Lucyna Czarnowska;

Application of life cycle thermo-ecological cost methodology for evaluation of biomass integrated gasification gas turbine based cogeneration

Abstract

Abstract Biomass integrated gasification cogeneration is nowadays considered as one of the most attractive technologies for CO 2 emission reduction and non-renewable fuel savings. The paper presents application of the Thermo-Ecological Cost (TEC), which expresses the cumulative consumption of non-renewable exergy, for examination of energy and environmental benefits of biomass energy conversion plant based on gasification technology and medium scale recuperative gas turbine. To express the total effect of considered energy conversion systems the TEC is supplemented with the data resulting from Life Cycle Analysis (LCA). Different available gasification technologies and configurations of a cogeneration plant are investigated. Atmospheric fluidized bed gasification (AFB), pressurized fluidized bed gasification (PFB) and allothermal gasification using pure steam as gasification agent (FICFB) are taken into account as well as simple and combined power cycles with the Mercury 50 Solar gas turbine. The results reveal that simple cycle with gas turbine and waste heat recovery water boiler offers better effects than combined cycle configuration. The best performance has been reported for pressurized gasification technology.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Top 10%
Top 10%
Top 10%