
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Evaluation of reactive absorption and adsorption systems for post-combustion CO2 capture applied to iron and steel industry

Abstract Reducing CO2 emissions from energy sector and other fossil fuel-intensive industrial applications is of main importance today. The iron and steel industry is one of the largest industrial sources of CO2 (about 6% of total CO2 emissions). Two post-combustion CO2 capture methods based on reactive gas-liquid and gas-solid systems are evaluated to be used in an integrated steel mill in conjunction with the plant sub-systems with the highest CO2 emissions e.g., captive power plant, hot stoves, coke ovens, lime kilns, etc. The gas-liquid absorption using chemical solvents (e.g., alkanolamines) and Calcium Looping (CaL) are assessed. The carbon capture rate is set to be at least 90%. The paper evaluates a conventional size of integrated steel mill emphasizing the energy integration aspects and the influence of various carbon capture options on the overall steel mill performances. The evaluated designs (captive power plants and carbon capture units) were modelled and simulated, the results being used to assess the overall indicators. For comparison reason, various captive power plant configurations of integrated steel mill without carbon capture were also considered. The assessments show that CaL system has significant advantages compared not only to benchmark cases without capture but also to the gas-liquid absorption cases.
- Babeș-Bolyai University Romania
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).55 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
