
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
An innovative vortex-tube turbo-expander refrigeration cycle for performance enhancement of nitrogen-based natural-gas liquefaction process

Abstract Liquefied natural gas (LNG) has attracted global attention as a more ecological energy source when compared to other fossil fuels. The nitrogen (N2) expander liquefaction is the most green and safe process among the different types of commercial natural gas liquefaction processes, but its relatively low energy efficiency is a major issue. To solve this issue, an energy-efficient, safe, and simple refrigeration cycle was proposed to improve the energy efficiency of the N2 based natural-gas liquefaction process. In the proposed refrigeration cycle, vortex tube as an expansion device was integrated with turbo-expander in order to reduce the overall required energy for LNG production. A well-known commercial simulator Aspen Hysys® v9 was employed for modeling and analysis of proposed LNG process. The hybrid vortex-tube turbo-expander LNG process resulted in the specific energy requirement of 0.5900 kWh/kg LNG. Furthermore, the energy efficiency of the proposed LNG process was also compared with previous N2 expander-based LNG processes. The results demonstrated that the proposed hybrid configuration saved up to 68.5% (depending on feed composition and conditions) in terms of the overall specific energy requirement in comparison with previous studies.
- International Islamic University Pakistan
- International Islamic University Pakistan
- Yeungnam University Korea (Republic of)
- Yeungnam University Korea (Republic of)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).37 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
