Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Applied Thermal Engi...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Thermal Engineering
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Thermal Engineering
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Experimental investigation on RCCI heat transfer in a light-duty diesel engine with different fuels: Comparison versus conventional diesel combustion

Authors: Pablo Olmeda; Antonio García; Javier Monsalve-Serrano; Rafael Lago Sari;

Experimental investigation on RCCI heat transfer in a light-duty diesel engine with different fuels: Comparison versus conventional diesel combustion

Abstract

[EN] Reactivity controlled compression ignition (RCCI) combustion has demonstrated to be able to avoid the NOx-soot trade-off appearing during conventional diesel combustion (CDC), with similar or better thermal efficiency than CDC under a wide range of operating conditions. The high thermal efficiency of RCCI is explained by the combination of a short-duration and well-phased combustion process, which maximizes the fuel-to-work conversion efficiency, together with relatively low combustion temperatures, which increases the specific heat ratio during expansion and reduces thermal gradients for heat transfer losses. The objective of this work is to study the RCCI heat transfer characteristics and compare them to those of the CDC regime. To do this, a single-cylinder light-duty research engine instrumented with 25K-type thermocouples distributed among the cylinder head and cylinder liner is used. First, the influence of some engine settings on the RCCI heat transfer phenomenon is explored by means of parametric sweeps. Later, the RCCI heat transfer characteristics are compared for two different low reactivity fuels (LRF), gasoline and E85. Finally, the heat transfer characteristics of RCCI and CDC combustion regimes are compared at some representative operating points in matched load conditions. The results show that both LRF tested are suitable to be used in RCCI giving similar results in terms of energy usage. Moreover, the ability of RCCI combustion in exploiting the fuel energy to extract useful work is demonstrated, reducing by 13% the heat transfer versus CDC. The authors gratefully acknowledge General Motors Global Research & Development for providing the engine used in this investigation. The authors also acknowledge FEDER and Spanish Ministerio de Economia y Competitividad for partially supporting this research through TRANCO project (TRA2017-87694-R).

Related Organizations
Keywords

Dual-fuel combustion, Ethanol, Efficiency, Internal combustion engine, Reactivity controlled compression ignition, MAQUINAS Y MOTORES TERMICOS

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    62
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 35
    download downloads 214
  • 35
    views
    214
    downloads
    Data sourceViewsDownloads
    RiuNet35214
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
62
Top 10%
Top 10%
Top 1%
35
214
Green
hybrid