Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
CNR ExploRA
Article . 2018
Data sources: CNR ExploRA
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Thermal Engineering
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IRIS Cnr
Article . 2018
Data sources: IRIS Cnr
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Performance and emissions of diesel-biodiesel-ethanol blends in a light duty compression ignition engine

Authors: Shamun; Sam; Belgiorno; Giacomo; Di Blasio; Gabriele; Beatrice; +5 Authors

Performance and emissions of diesel-biodiesel-ethanol blends in a light duty compression ignition engine

Abstract

An approach to reduce CO2emissions while simultaneously keeping the soot emissions down from compression ignition (CI) engines is to blend in short chained oxygenates into the fuel. In this work, two oxygenated fuel blends consisting of diesel, biodiesel and EtOH in the ratio of 68:17:15 and 58:14:30 has been utilized and studied in a single cylinder light duty (LD) CI engine in terms of efficiency and emissions. The reasons of utilizing biodiesel in the fuel blend is due to the emulsifying properties it has while the origin of the fuel is biomass. When performing the experiments, the control parameters were set as close as possible to the original equipment manufacturer (OEM) EU5 calibration of the multi-cylinder engine to study the possibility of using such blends in close to stock LD CI engines. The oxygenates, in particular the fuel with the higher concentration of EtOH, showed an net indicated efficiency of ~52% at high load in comparison to diesel which never exceeded ~48%. Regarding the emissions, several trends were observed; the soot-NOXtrade-off diminished significantly when utilizing the fuel with the highest concentration of EtOH. The charge cooling effect reduces the NOXemissions while the exhaust particles are reduced both in terms of mean diameter and quantity. At lower loads, the THC and CO emissions were higher for the oxygenated blends than for the diesel due to the earlier mentioned charge cooling negatively affecting the combustion process. However, this trend seized at the higher loads when the in-cylinder temperature is higher and oxidation of the fuel is enhanced.

Country
Italy
Keywords

Ethanol, Efficiency, FAME, LD engine, Emissions, Diesel

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    94
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
94
Top 1%
Top 10%
Top 1%