
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Thermal degradation of bituminous coal with both model-free and model-fitting methods


Gang Wang

Xuelin Liu
Thermal degradation of bituminous coal with both model-free and model-fitting methods
Abstract A series of thermogravimetric experiments was conducted to study the thermal degradation of bituminous coal at various heating rates in both nitrogen and air atmosphere. Both model-free and model-fitting methods were applied simultaneously to explore the reaction kinetic parameters. The activation energies were estimated in the range of 194.7–348.0 kJ/mol at different conversions by two typical model-free methods (Flynn-Wall-Ozawa and Kissinger-Akahira-Sunose methods). Shuffled Complex Evolution method (SCE), as the representative of model-fitting method, was firstly used in the coal pyrolysis process. By comparison, the predicted activation energy (199.2 kJ/mol) by model-fitting method was just within the range of values obtained by the model-free methods, validating the applicability of this model-fitting method. Furthermore, the effect of char oxidation and its kinetic parameters are analyzed by SCE based on the difference of nitrogen and air atmosphere. These optimized parameters can be coupled with the pyrolysis model and applied in the following energy conversion processes.
- Shandong University of Science and Technology China (People's Republic of)
- Shandong University of Science and Technology China (People's Republic of)
1 Research products, page 1 of 1
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).65 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
