Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Thermal Engi...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Thermal Engineering
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Numerical investigations of an opposed rotary piston expander for the purpose of the applications to a small-scale Rankine cycle

Authors: Jianbing Gao; Jianbing Gao; Jianbing Gao; Phil Jenner; Shikai Xing; Guohong Tian; Chaochen Ma;

Numerical investigations of an opposed rotary piston expander for the purpose of the applications to a small-scale Rankine cycle

Abstract

Abstract Requirements of recycling low temperature waste heat energy from internal combustion engines drive the developments of excellent performance expanders with high compactness which significantly affects the applications of waste heat recovery systems to on-road vehicles. In the present study, an opposed rotary piston expander was proposed for the practical utilisations on a small-scale Organic Rankine Cycle (ORC) system, aiming at recycling the waste heat energy from internal combustion engines of on-road vehicles. The opposed rotary piston expander had a cyclic period of 180° crank angle (CA), four intake ports and two discharge ports. In order to investigate the expander performance, 3D numerical simulations were conducted under various scenarios whose boundary conditions were among the frequently reported thermodynamic states in ORC systems; additionally, these scenarios were around the design operation point of the expander. Intake and discharge characteristics, in-cylinder pressure evolutions, in-cylinder fluid flow, and P-V diagrams were analysed; further, volumetric efficiency, power output and adiabatic efficiency were calculated using the simulation results, and were compared to various types of expanders. Each two opposed cylinders had the same evolutions of cylinder volume, fluid mass, in-cylinder pressure, and temperature during operation. Maximum fluid flow rate in the intake process increased with intake pressure and rotation speed; in addition, the in-cylinder pressure reached the maximum value in a short time after the intake ports opened. However, high rotation speed also led to a drop of in-cylinder pressure (expansion process), volumetric efficiency, and adiabatic efficiency compared to low speed condition.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Top 10%
Average
Top 10%