
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Analysis of power conversion technology options for a self-powered furnace

Abstract A self-powered furnace is defined as one that imports no electricity: a power cycle integrated into the furnace generates all the electrical power needed, and the heat rejected by the power cycle contributes to space heating. This paper presents criteria for selection of suitable power generation technology for such a furnace. A weighting system was presented to assign weight to each criterion based on its importance to the success of a self-powered furnace implementation. Power generation candidates were reviewed and scored based on the selection criteria. The top five candidates were analyzed to quantitatively compare the additional heat exchange requirements they impose on a baseline furnace. Air-cooled internal combustion engines and microturbine generators had negligible impact on the heat exchange requirement compared to a baseline furnace. Liquid-cooled internal combustion engines increased the heat exchange requirement by a factor of 1.5. Thermoelectric generators and thermophotovoltaic increased the heat exchange requirement by a factor of roughly 2.5. Organic Rankine cycle increased the heat exchange requirement by a factor of 5.
- Oak Ridge National Laboratory United States
- Oak Ridge National Laboratory United States
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).7 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
