Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Thermal Engi...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Thermal Engineering
Article . 2023 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Current status of the thermohydraulic behavior of supercritical refrigerants: A review

Authors: J. Van Nieuwenhuyse; S. Lecompte; M. De Paepe;

Current status of the thermohydraulic behavior of supercritical refrigerants: A review

Abstract

Supercritical heat transfer has already been applied for decades, as it has several benefits such as improved thermal efficiency of the thermodynamic cycle. Accurate knowledge about supercritical heat transfer and pressure drop of the different working fluids is required to design the heat exchangers and other components used in these systems. In literature, supercritical heat transfer of water and CO2 has already been widely investigated, the research involving refrigerants (for their application in low-temperature heat conversion systems) is however rather scarce. This paper gives an overview of the existing research on supercritical heat transfer. An overview of the applications, general characteristics and the main findings for water and other fluids are summarized. Due to the sharp variations in thermophysical properties, heat transfer and pressure drop cannot be accurately predicted on a single-phase based approach only. An in-detail review of the current research and status of knowledge about supercritical heat transfer of refrigerants is presented. The effect of the different investigated refrigerants and operating parameters on heat transfer and pressure drop, both for heating and cooling applications, is discussed. The remaining gaps in literature are highlighted, which include studies involving larger diameter tubes, horizontal flow, cooling heat transfer and pressure drop estimations and creation of a wider database for a more general correlation development and measurements on newer refrigerants (with low Global Warming Potentials) as these will become increasingly important in the near future. In addition, advances in numerical research should focus on development of suitable turbulence models. Overall, further improving the basic understanding of the fluid structure and occurrence of deteriorated heat transfer, as well as forming reliable models for the thermophysical properties are key in future efforts.

Country
Belgium
Related Organizations
Keywords

Technology and Engineering

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Average
Top 10%