Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Applied Thermal Engi...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Thermal Engineering
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
SINTEF Open
Article . 2022
Data sources: SINTEF Open
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Parametric study of low-temperature thermal energy storage using carbon dioxide as the phase change material in pillow plate heat exchangers

Authors: Mastani Joybari, Mahmood; Selvnes, Håkon; Vingelsgård, Erling; Sevault, Alexis; Hafner, Armin;

Parametric study of low-temperature thermal energy storage using carbon dioxide as the phase change material in pillow plate heat exchangers

Abstract

Industrial low-temperature freezing applications are often batch processes, requiring a lot of energy, exerting stress on the electrical grid. To relieve this stress, thermal energy storage can be used. However, there is a lack of suitable storage material for low temperature applications (around −50 °C). Under high pressures, carbon dioxide can be used as the phase change material for storage temperatures around −55 °C. In this study, a parametric study was conducted on the design and operational parameters of an industrial-scale pillow plate heat exchanger with carbon dioxide. Two responses were selected for the analysis where R1 considered the storage size over the phase change time (kWh/h), while R2 indicated the cost over the storage size (USD/kWh). Using design of experiments, a total of 52 simulations were carried out to investigate the parameters under constant heat transfer surface area. Analysis of variance was then carried out followed by correlation development and optimization. It was found that regardless of the process (charging or discharging), for R1 and R2, the difference between refrigerant and carbon dioxide phase change temperatures followed by plate material had the highest significance. In contrast, the refrigerant flow rate had the lowest significance in almost all cases. Moreover, considering an equal weight for the responses, overall optimal conditions were determined for the processes. The recommended values for plate pitch, plate material, difference between refrigerant and carbon dioxide phase change temperatures and refrigerant flow rate were 25 mm, aluminum, 15 °C and 4 kg/s, respectively.

Country
Norway
Keywords

Parametric study, Carbon dioxide, Pillow-plate heat exchanger, Taguchi method, Thermal energy storage, Phase change material

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Top 10%
Green
hybrid