Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Soil Ecologyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Soil Ecology
Article . 2017 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Returning biochar to fields: A review

Authors: Tan, Zhongxin; Lin, Carol; Ji, Xiaoyan; Rainey, Thomas;

Returning biochar to fields: A review

Abstract

Biochar generated from thermochemical conversion of biomass reduces greenhouse gas emissions and is useful for improving ecological systems in agriculture. However, certain biochars function well in improving soil, and other biochars do not. Why? Because it is not clear how to prepare the best biochar for soil. There is a disconnect between biochar preparation and returning the biochar to the soil. To elucidate this relationship, this paper reviews (i) technologies for preparing biochar, (ii) how preparation conditions affect biochar properties, and (iii) the effects on soil physical and chemical properties. In addition to reducing greenhouse gas emissions, biochar improves the physicochemical and microbial properties of soil and absorbs poisonous and pernicious substances. Therefore, as biochar is produced by pyrolysis, optimizing processing conditions to improve its properties for agricultural use is a key issue explored in this article.

Country
Australia
Related Organizations
Keywords

Physicochemical properties of biochar, Returning biochar to soil, Nutrient cycling, Systematic analysis of biochar return, Biochar

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    240
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
240
Top 1%
Top 10%
Top 1%
bronze