Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Arabian Journal of C...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Arabian Journal of Chemistry
Article . 2022 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Arabian Journal of Chemistry
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Arabian Journal of Chemistry
Article . 2022
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Sodium and potassium silicate-based catalysts prepared using sand silica concerning biodiesel production from waste oil

Authors: Keverson G. de Oliveira; Ramoni R.S. de Lima; Clenildo de Longe; Tatiana de C. Bicudo; Rafael V. Sales; Luciene S. de Carvalho;

Sodium and potassium silicate-based catalysts prepared using sand silica concerning biodiesel production from waste oil

Abstract

Heterogeneous catalysts, named SPS (sodium potassium silicates), were synthesized with an alternative silica (MPI silica) obtained from beach sand. In this work, the MPI was modified with NaOH and KOH producing silicate-based catalyst for biodiesel synthesis from waste cooking oil (WCO). The obtained catalyst was characterized by XRD, CO2-TPD, the Hammett basicity test, XRF, FESEM, EDX, FTIR and TG/DTG. The results confirmed the presence of K2O/Na2O oxides and their silicates, the main active sites responsible for the catalytic action. CO2-TPD and the Hammett basicity data suggested the presence of weak, medium and strong basic sites. Biodiesel yield was about 92% and the SPS catalyst was reused for five cycles. The biodiesel conversion by NMR 1H was about 93.89%. The DTG deconvolution revealed the decomposition of four typical biodiesel compounds (R2 = 0.9987). The method applied for the WCO biodiesel production using SPS catalyst represents an environmentally friendly process, based on low-cost material and reuse of waste biomass.

Keywords

Deconvolution method, Waste cooking oil, Heterogeneous catalyst, Sodium potassium silicates, Chemistry, Alternative silica, Biodiesel, QD1-999

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Top 10%
Average
Top 10%
gold