
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Design principles of solar light harvesting in plants: Functional architecture of the monomeric antenna CP29

In plants and green algae, light-harvesting complexes (LHCs) are a large family of chlorophyll binding proteins functioning as antennae, collecting solar photons and transferring the absorbed energy to the photosynthetic reaction centers, where light to chemical energy conversion begins. Although LHCs are all highly homologous in their structure and display a variety of common features, each complex finds a specific location and task in the energy transport. One example is CP29, which occupies a pivotal position in Photosystem II, bridging the peripheral antennae to the core. The design principles behind this specificity, however, are still unclear. Here, a synergetic approach combining steady-state and ultrafast spectroscopy, mutational analysis and structure-based exciton modeling allows uncovering the energy landscape of the chlorophylls bound to this complex. We found that, although displaying an overall highly conserved exciton structure very similar to that of other LHCs, CP29 possesses an additional terminal emitter domain. The simultaneous presence of two low energy sites facing the peripheral antennae and the core, allows CP29 to efficiently work as a conduit in the energy flux. Our results show that the LHCs share a common solid architecture but have finely tuned their structure to carry out specific functions.
- Vrije Universiteit Amsterdam Netherlands
- Lomonosov Moscow State University Russian Federation
Chlorophyll, Models, Molecular, Electronic spectroscopy, Biophysics, Light-Harvesting Protein Complexes, Photosystem II Protein Complex, Exciton modeling, Cell Biology, Plants, Mutational analysis, Biochemistry, Light harvesting, Energy Transfer, Energy transfer, Mutation, Sunlight, Thermodynamics
Chlorophyll, Models, Molecular, Electronic spectroscopy, Biophysics, Light-Harvesting Protein Complexes, Photosystem II Protein Complex, Exciton modeling, Cell Biology, Plants, Mutational analysis, Biochemistry, Light harvesting, Energy Transfer, Energy transfer, Mutation, Sunlight, Thermodynamics
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).34 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
