Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio Istituziona...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
CNR ExploRA
Article . 2022
Data sources: CNR ExploRA
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biological Conservation
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IRIS Cnr
Article . 2022
Data sources: IRIS Cnr
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Trends in habitat suitability and conservation status of aquatic spiders in Europe

Authors: Filippo Milano; Pedro Cardoso; Stefano Mammola; Helen Smith; Marco Isaia;

Trends in habitat suitability and conservation status of aquatic spiders in Europe

Abstract

Wetlands, one of the most biodiverse ecosystems in the world, are increasingly subjected to area loss and degradation due to land-use and climate changes. These factors impact their unique biodiversity, including numerous invertebrates that depend on them. Here we investigated the current and future habitat suitability of the aquatic spiders Argyroneta aquatica and Dolomedes plantarius. We evaluated future trends in their geographic range, aiming at assessing their extinction risk according to the International Union for Conservation of Nature (IUCN) Red List criteria, at both global and regional levels. We investigated present and future distribution ranges using species distribution models for two integrated emission scenarios (SSP1-2.6 and SSP5-8.5) and combining three general circulation models. These were combined with knowledge on species' dispersal limitation to account for the possibility that these species will not be able to move beyond the current range in the next decades. We found a significant future northern shift in the geographic range and a global reduction in habitat suitability for both species, corresponding to a loss of 28.9 % for A. aquatica and 38.1 % for D. plantarius in the next 10 years. The application of the IUCN criteria qualifies A. aquatica as Near Threatened and D. plantarius as Vulnerable. Regional assessments provided similar patterns of range reductions and population vulnerability across all European regions, particularly for Central-Eastern and Western Europe. Conversely, Northern Europe is expected to become a climatic refugium for both species. This work goes beyond the available studies on the conservation of these species by taking account their dispersal abilities in quantifying future trends in their habitat suitability using the most up to date knowledge. Conservation strategies should be directed towards limiting the impact of climatic and non-climatic stressors on wetlands, and towards implementing management plans and restoration programmes to increase habitat suitability and connectivity among wetland patches.

Country
Italy
Keywords

Extinction risk, IUCN, Wetlands, Climate change, IUCN, Wetlands, Invertebrate conservation, Extinction risk, Climate change, Shared Socioeconomic Pathways (SSPs), Invertebrate conservation, Shared Socioeconomic Pathways (SSPs)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average