
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Employing FAD-dependent glucose dehydrogenase within a glucose/oxygen enzymatic fuel cell operating in human serum

pmid: 25890695
Flavin adenine dinucleotide-dependent glucose dehydrogenase (FAD-GDH) is emerging as an oxygen-insensitive alternative to glucose oxidase (GOx) as the biocatalyst for bioelectrodes and bioanodes in glucose sensing and glucose enzymatic fuel cells (EFCs). Glucose EFCs, which utilize oxygen as the oxidant and final electron acceptor, have the added benefit of being able to be implanted within living hosts. These can then produce electrical energy from physiological glucose concentrations and power internal or external devices. EFCs were prepared with FAD-GDH and bilirubin oxidase (BOx) to evaluate the suitability of FAD-GDH within an implantable setting. Maximum current and power densities of 186.6±7.1 μA cm(-2) and 39.5±1.3 μW cm(-2) were observed when operating in human serum at 21 °C, which increased to 285.7±31.3 μA cm(-2) and 57.5±5.4 μW cm(-2) at 37 °C. Although good stability was observed with continual near-optimal operation of the EFCs in human serum at 21 °C for 24 h, device failure was observed between 13-14 h when continually operated at 37 °C.
- University of Utah United States
- University of Utah United States
Serum, Oxidoreductases Acting on CH-CH Group Donors, Bioelectric Energy Sources, Glucose 1-Dehydrogenase, Oxygen, Aspergillus, Glucose, Hypocreales, Flavin-Adenine Dinucleotide, Humans, Electrodes
Serum, Oxidoreductases Acting on CH-CH Group Donors, Bioelectric Energy Sources, Glucose 1-Dehydrogenase, Oxygen, Aspergillus, Glucose, Hypocreales, Flavin-Adenine Dinucleotide, Humans, Electrodes
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).91 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
