Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Utrecht University R...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biomass and Bioenergy
Article . 2010 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

European biomass resource potential and costs

Authors: de Wit, M.P.; Faaij, A.P.C.;

European biomass resource potential and costs

Abstract

The objective of this study is to assess the European (EU27+ and Ukraine) cost and supply potential for biomass resources. Three methodological steps can be distinguished (partly based on studies explained elsewhere in this volume) (i) an evaluation of the available ‘surplus’ land, (ii) a modeled productivity and (iii) an economic assessment for 13 typical bioenergy crops. Results indicate that the total available land for bioenergy crop production – following a ‘food first’ paradigm – could amount to 900 000 km2 by 2030. Three scenarios were constructed that take into account different development directions and rates of change, mainly for the agricultural productivity of food production. Feedstock supply of dedicated bioenergy crop estimates varies between 1.7 and 12.8 EJ y−1. In addition, agricultural residues and forestry residues can potentially add to this 3.1–3.9 EJ y−1 and 1.4–5.4 EJ y−1 respectively. First generation feedstock supply is available at production costs of 5–15 € GJ−1 compared to 1.5–4.5 € GJ−1 for second generation feedstocks. Costs for agricultural residues are 1–7 € GJ−1 and forestry residues 2–4 € GJ−1. Large variation exists in biomass production potential and costs between European regions, 280 (NUTS2) regions specified. Regions that stand out with respect to high potential and low costs are large parts of Poland, the Baltic States, Romania, Bulgaria and Ukraine. In Western Europe, France, Spain and Italy are moderately attractive following the low cost high potential criterion.

Country
Netherlands
Related Organizations
Keywords

SDG 2 - Zero Hunger, SDG 15 - Life on Land

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    232
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
232
Top 1%
Top 1%
Top 1%
Green