
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Biomass availability for lignocellulosic ethanol production

Abstract The ethanol industry in North America uses starch derived from corn as its primary feedstock. In order to better understand the geographical distribution of advanced ethanol production, potential sources of lignocellulosic biomass for the process are considered. It is shown that the corn-producing regions of North America already support significant amounts of ethanol production, and that few unexploited sources of corn remain for the industry to utilize. Accessing other sources of sugar, including other types of biomass such as lignocellulosic materials, will become necessary for the industry as it expands, quite apart from the need to meet government mandates. The ability of bioconversion and thermochemical conversion to generate biofuels from lignocellulosic biomass is reviewed. The availability of lignocellulosic residues from agricultural and forestry operations is described, and the potential biofuel production associated with these residues is described. A residue-based process could greatly extend the potential of the ethanol industry to become a substantial contributor to the fuel and energy requirements of North America. It is estimated that ethanol production from residues could provide up to 13.7% of Canada’s 2009 transportation fuel demand, and up to 5.2% of the United States’ 2010 fuel demand. Utilizing lignocellulosic biomass will extend the geographic range of the biofuel industry, and increase the stability and security of this sector by reducing the impact of localized disruptions in supply. Development of a residue-based industry will help create the technologies needed to process energy crops as North America moves towards greater transportation fuel independence.
- Queen's University Canada
- University of British Columbia Canada
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).100 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
