
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Thermal pretreatment to improve methane production of Scenedesmus biomass

Abstract Research into the development of renewable and sustainable fuels has been a major concern during last decades. Microalgae, as a potential resource, have gained great attention for energy purposes. In this context, anaerobic digestion seems to be the most direct energy generation process. Nevertheless, the efficiency of this process is hampered due to the hard cell wall of some microalgae. In order to enhance its anaerobic biodegradability, the present research investigated the effect of thermal pretreatment at two temperatures (70 and 90 °C) applied to Scenedesmus biomass. No differences were detected in terms of organic matter or ammonium release upon the two tested temperatures. Nevertheless, a different fact was observed for their anaerobic biodegradability. While raw and pretreated at 70 °C microalgae attained 22–24% anaerobic biodegradability, microalgae pretreated at 90 °C achieved anaerobic biodegradability of 48%. Even though similar profiles were obtained for both temperatures along the pretreatment period, the damage caused in the cell wall at 90 °C seemed to be greater and rendered this substrate readily degradable for anaerobic digestion.
Cell wall, [SDV]Life Sciences [q-bio], Photobioreactor, Biofuel, Anaerobic digestion, [SDE]Environmental Sciences, Microalgae, Pretreatment
Cell wall, [SDV]Life Sciences [q-bio], Photobioreactor, Biofuel, Anaerobic digestion, [SDE]Environmental Sciences, Microalgae, Pretreatment
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).180 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
