
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Concentration of mineral elements in wheat (Triticum aestivum L.) straw: Genotypic differences and consequences for enzymatic saccharification

Crop residues are utilized as lignocellulosic biomass for production of energy via biochemical or thermochemical degradation. The conversion efficiency depends on the content of major organic components, but also other elements play a role and are thus considered to be important biomass quality parameters. In the present study, 20 winter wheat (Triticum aestivum L.) genotypes were grown at two different geographical locations and the straw was analyzed for the concentration of elements such as silicon (Si), sulfur (S), nitrogen (N) and the metals potassium (K), calcium (Ca) and magnesium (Mg). The Si concentration ranged between 11.3 g kg−1 and 23.4 g kg−1 straw dry matter and differed significantly among the genotypes and between the locations. Significant differences among genotypes were also observed for S, K and Ca, but not for N. The enzymatic saccharification efficiency differed significantly among the genotypes. Straw concentration of Si did not influence the sugar release during enzymatic saccharification, while total carbon (C) had a positive influence and S and K a negative effect. It is concluded that the quality of straw biomass for bioenergy purposes can be optimized by proper selection of genotype and considerations to growth conditions.
- University of Copenhagen Denmark
- University of Copenhagen Denmark
- University of Copenhagen Denmark
Silicon, Genotype, Wheat (Triticum aestivum L.) straw, Enzymatic degradation, Bioenergy, Biomass
Silicon, Genotype, Wheat (Triticum aestivum L.) straw, Enzymatic degradation, Bioenergy, Biomass
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).17 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
